Cardiac xenotransplantation: recent preclinical progress with 3-month median survival.
نویسندگان
چکیده
OBJECTIVES Transplantation is limited by a lack of human organ donors. Organs derived from animals, most likely the pig, represent a potential solution to this problem. For the heart, 90-day median graft survival of life-supporting pig hearts transplanted to nonhuman primates has been considered a reasonable standard for entry into the clinical arena. Overcoming the immune barrier to successful cardiac xenotransplantation is most appropriately first explored with the non-life-supporting heterotopic model. METHODS We performed a series of 7 heterotopic heart transplantations from CD46 transgenic pigs to baboons using a combination of therapeutic agents largely targeted at controlling the synthesis of anti-pig antibodies. Rituximab (anti-CD20) and Thymoglobulin (rabbit antithymocyte globulin [ATG]; SangStat Medical Corp, Fremont, Calif) were used as induction therapy. Baseline immunosuppression consisted of splenectomy, tacrolimus, sirolimus, steroids, and TPC (an anti-Gal antibody therapeutic). Rejection events were not treated. RESULTS By using Kaplan-Meier analysis, median graft survival was 96 days (range, 15-137 days; 95% confidence interval, 38-99 days). Only 2 grafts were lost as a result of rejection, as defined by cessation of graft palpation. There was no evidence of a consumptive coagulopathy, infectious complications were treatable, and no posttransplantation lymphoproliferative disorders occurred. No cellular infiltration was observed. CONCLUSIONS This study reports the longest median survival to date (96 days) of pig hearts transplanted heterotopically into baboons. Duplication of these results in the orthotopic life-supporting position could bring cardiac xenotransplantation to the threshold of clinical application.
منابع مشابه
The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation
Pig-to-human xenotransplantation offers a potential bridge to the growing disparity between patients with end-stage organ failure and graft availability. Early studies attempting to overcome cross-species barriers demonstrated robust humoral immune responses to discordant xenoantigens. Recent advances have led to highly efficient and targeted genomic editing, drastically altering the playing fi...
متن کاملRegulation of Clinical Xenotransplantation-Time for a Reappraisal.
The continual critical shortage of organs and cells from deceased human donors has stimulated research in the field of cross-species transplantation (xenotransplantation), with the pig selected as the most suitable potential source of organs. Since the US Food and Drug Administration concluded a comprehensive review of xenotransplantation in 2003, considerable progress has been made in the expe...
متن کاملReport of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases.
An urgent and steadily increasing need exists world-wide for a greater supply of donor thoracic organs. Xenotransplantation offers the possibility of an unlimited supply of hearts and lungs that could be available electively when required. However, anti-body- mediated mechanisms cause the rejection of pig organs transplanted into non-human primates, and these mechanisms provide major immunologi...
متن کاملHamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs.
Heterotopic hamster hearts transplanted to unmodified LEW rats underwent humoral rejection in 3 days. Survival was prolonged to a median of 4 days with 2 mg/kg/day FK506. As monotherapy, 15 mg/kg/day cyclophosphamide greatly prolonged graft survival--far more than could be accomplished with RS-61443, brequinar (BQR), mizoribine, methotrexate, or deoxyspergualin. However, when FK506 treatment, w...
متن کاملThe immense potential of xenotransplantation in surgery.
There is a limited availability of deceased human organs and cells for the purposes of clinical transplantation. Genetically-engineered pigs may provide an alternative source. Although several immune barriers need to be overcome, considerable progress has been made in experimental models in recent years, largely through the increasing availability of pigs with new genetic modifications. Pig het...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of thoracic and cardiovascular surgery
دوره 130 3 شماره
صفحات -
تاریخ انتشار 2005